System and method for adversarial vulnerability testing of machine learning models

A system and method for adversarial vulnerability testing of machine learning models is proposed that receives as an input, a representation of a non-differentiable machine learning model, transforms the input model into a smoothed model and conducts an adversarial search against the smoothed model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Castiglione, Giuseppe Marcello Antonio, Wu, Ga, Ding, Weiguang, Hashemi Amroabadi, Sayedmasoud, Srinivasa, Christopher Côté
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system and method for adversarial vulnerability testing of machine learning models is proposed that receives as an input, a representation of a non-differentiable machine learning model, transforms the input model into a smoothed model and conducts an adversarial search against the smoothed model to generate an output data value representative of a potential vulnerability to adversarial examples. Variant embodiments are also proposed, directed to noise injection, hyperparameter control, and exhaustive/sampling-based searches in an effort to balance computational efficiency and accuracy in practical implementation. Flagged vulnerabilities can be used to have models re-validated, re-trained, or removed from use due to an increased cybersecurity risk profile.