Privacy-first on-device federated health modeling and intervention

The present disclosure provides systems and methods that leverage machine-learned models in conjunction with user-associated data and disease prevalence mapping to predict disease infections with improved user privacy. In one example, a computer-implemented method can include obtaining, by a user co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sadilek, Adam, Bonawitz, Keith Allen, Aguera-Arcas, Blaise
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present disclosure provides systems and methods that leverage machine-learned models in conjunction with user-associated data and disease prevalence mapping to predict disease infections with improved user privacy. In one example, a computer-implemented method can include obtaining, by a user computing device associated with a user, a machine-learned prediction model configured to predict a probability that the user may be infected with a disease based at least in part on user-associated data associated with the user. The method can further include receiving, by the user computing device, the user-associated data associated with the user. The method can further include providing, by the user computing device, the user-associated data as input to the machine-learned prediction model, the machine-learned prediction model being implemented on the user computing device. The method can further include receiving, by the user computing device, a current disease prediction for the user as an output of the machine-learned prediction model. The method can further include providing, by the user computing device, data indicative of the current disease prediction for the user to a central computing system for use in updating a prevalence map that models prevalence of the disease over a plurality of geographic locations.