Machine learning of encoding parameters for a network using a video encoder
In various examples, machine learning of encoding parameter values for a network is performed using a video encoder. Feedback associated with streaming video encoded by a video encoder over a network may be applied to an MLM(s). Using such feedback, the MLM(s) may predict a value(s) of an encoding p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In various examples, machine learning of encoding parameter values for a network is performed using a video encoder. Feedback associated with streaming video encoded by a video encoder over a network may be applied to an MLM(s). Using such feedback, the MLM(s) may predict a value(s) of an encoding parameter(s). The video encoder may then use the value to encode subsequent video data for the streaming. By using the video encoder in training, the MLM(s) may learn based on actual encoded parameter values of the video encoder. The MLM(s) may be trained via reinforcement learning based on video encoded by the video encoder. A rewards metric(s) may be used to train the MLM(s) using data generated or applied to the physical network in which the MLM(s) is to be deployed and/or a simulation thereof. Penalty metric(s) (e.g., the quantity of dropped frames) may also be used to train the MLM(s). |
---|