System and method for identification of plant species

A computer-implemented method, computer program product and computer system (100) for identifying weeds in a crop field using a dual task convolutional neural network (120) having a topology with an intermediate module (121) to execute a classification task being associated with a first loss functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Klukas, Christian, Gonzalez San Emeterio, Miguel, Eggers, Till, Echazarra Huguet, Jone, Linares De La Puerta, Miguel, Contreras Gallardo, Juan Manuel, Kraemer, Gerd, Oberst, Rainer, Picon Ruiz, Artzai, Navarra-Mestre, Ramon, Gad, Hikal Khairy Shohdy, Romero Rodriguez, Javier
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computer-implemented method, computer program product and computer system (100) for identifying weeds in a crop field using a dual task convolutional neural network (120) having a topology with an intermediate module (121) to execute a classification task being associated with a first loss function (LF1), and with a semantic segmentation module (122) to execute a segmentation task with a second different loss function (LF2). The intermediate module and the segmentation module are being trained together, taking into account the first and second loss functions (LF1, LF2). The system executes a method including receiving a test input (91) comprising an image showing crop plants of a crop species in an agricultural field and showing weed plants of one or more weed species among said crop plants; predicting the presence of one or more weed species (11, 12, 13) which are present in the respective tile; outputting a corresponding intermediate feature map to the segmentation module as output of the classification task; generating a mask for each weed species class as segmentation output of the second task by extracting multiscale features and context information from the intermediate feature map and concatenating the extracted information to perform semantic segmentation; and generating a final image (92) indicating for each pixel if it belongs to a particular weed species, and if so, to which weed species it belongs.