Power module, power conversion device, and method for manufacturing power module
The resin material 336 is arranged in a first region 421 surrounded by the fin base 440, the inclined portion 343 of the cover member 340, and the outermost peripheral heat dissipation fins 334 arranged on the outermost peripheral side. Then, the resin material 336 is caused to protrude to the first...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The resin material 336 is arranged in a first region 421 surrounded by the fin base 440, the inclined portion 343 of the cover member 340, and the outermost peripheral heat dissipation fins 334 arranged on the outermost peripheral side. Then, the resin material 336 is caused to protrude to the first region 421. That is, the resin material 336 is arranged in the first region 421. In a cross section perpendicular to the refrigerant flow direction (Y direction), a cross-sectional area of the first region 421 is larger than an average cross-sectional area 423 of the adjacent heat dissipation fins 331. Then, a cross-sectional area of a second region 422 formed between the resin material 336 arranged in the first region 421 and the outermost peripheral heat dissipation fin 334 arranged on the outermost peripheral side is smaller than the average cross-sectional area 423 of the heat dissipation fins. |
---|