Cutoff value optimization for bias mitigating machine learning training system with multi-class target

A computing device trains a fair prediction model while defining an optimal event cutoff value. (A) A prediction model is trained with observation vectors. (B) The prediction model is executed to define a predicted target variable value and a probability associated with an accuracy of the predicted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abbey, Ralph Walter, Tharrington, Jr., Ricky Dee, Hunt, Xin Jiang, Wu, Xinmin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computing device trains a fair prediction model while defining an optimal event cutoff value. (A) A prediction model is trained with observation vectors. (B) The prediction model is executed to define a predicted target variable value and a probability associated with an accuracy of the predicted target variable value. (C) A conditional moments matrix is computed based on fairness constraints, the predicted target variable value, and the sensitive attribute variable value of each observation vector. The predicted target variable value has a predefined target event value only when the probability is greater than a predefined event cutoff value. (D) (A) through (C) are repeated. (E) An updated value is computed for the predefined event cutoff value. (F) (A) through (E) are repeated. An optimal event cutoff value is defined from the predefined event cutoff values used when repeating (A) through (E). The optimal value and prediction model are output.