Deep multi-task representation learning

Technologies for analyzing multi-task multimodal data to detect multi-task multimodal events using a deep multi-task representation learning, are disclosed. A combined model with both generative and discriminative aspects is used to share information during both generative and discriminative process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tamrakar, Amir, Ehrlich, Max, Almaev, Timur, Amer, Mohamed R, Shields, Timothy J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Technologies for analyzing multi-task multimodal data to detect multi-task multimodal events using a deep multi-task representation learning, are disclosed. A combined model with both generative and discriminative aspects is used to share information during both generative and discriminative processes. The technologies can be used to classify data and also to generate data from classification events. The data can then be used to morph data into a desired classification event.