Filter circuitry using active inductor
A filter circuitry (200) using an active inductor is disclosed. The filter circuitry (200) has a first terminal (In1/Out1) and a second terminal (In2/Out2). The filter circuitry (200) comprises a first transistor (M1) and a second transistor (M2). The filter circuitry (200) further comprises a first...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A filter circuitry (200) using an active inductor is disclosed. The filter circuitry (200) has a first terminal (In1/Out1) and a second terminal (In2/Out2). The filter circuitry (200) comprises a first transistor (M1) and a second transistor (M2). The filter circuitry (200) further comprises a first switch (S1), a second switch (S2), a first capacitor (C1), a second capacitor (C2) and a resistor (R). The first and second transistors (M1/M2) together with the resistor (R) and the first and second switches (S1/S2) are connected in a current mirror topology. The first and second capacitors (C1/C2) are connected at the first and second terminals of the filter circuitry (200) respectively. The filter circuitry (200) is configurable to either have the first terminal (In1/Out1) as input and the second terminal (In2/Out2) as output or have the first terminal (In1/Out1) as output and the second terminal (In2/Out2) as input by changing on-off states of the first and second switches. The transistors are interconnected in a current-mirror fashion. Depending on the switch position one of the transistors also acts as part of an active inductor such that the circuit functions as a low pass filter with a complex pole pair and a real pole. Depending on the switch position the LPF allows signal flow in either direction. For use in a TDD environment in combination with a passive mixer (420). |
---|