Multi-resolution modeling of discrete stochastic processes for computationally-efficient information search and retrieval

An activity of interest is modeled by a non-stationary discrete stochastic process, such as a pattern of mutations across a cancer genome. Initially, input genomic data is used to train a model to predict rate parameters and their associated uncertainty estimation for each of a set of process region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sherman, Maxwell Aaron, Yaari, Adam Uri, Leighton, Bonnie Berger
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An activity of interest is modeled by a non-stationary discrete stochastic process, such as a pattern of mutations across a cancer genome. Initially, input genomic data is used to train a model to predict rate parameters and their associated uncertainty estimation for each of a set of process regions. For any arbitrary set of indexed positions of the stochastic process that are identified in an information query, the rate parameters and their associated estimation uncertainties are scaled using the model to obtain a distribution of the events of interest and their associated estimation uncertainties for the set of indexed positions. In one practical application, and in response to a search query associated with one or more base-pairs, a result is then returned. The result, which represents deviations between the estimated and observed mutation rates, is used to identify genomic elements that have more mutations than expected and therefore constitute previously unknown driver mutations.