Black-box optimization using neural networks

Methods and systems for determining an optimized setting for one or more process parameters of a machine learning training process. One of the methods includes processing a current network input using a recurrent neural network in accordance with first values of the network parameters to obtain a cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gomes de Freitas, Joao Ferdinando, Chen, Yutian
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods and systems for determining an optimized setting for one or more process parameters of a machine learning training process. One of the methods includes processing a current network input using a recurrent neural network in accordance with first values of the network parameters to obtain a current network output, obtaining a measure of the performance of the machine learning training process with an updated setting defined by the current network output, and generating a new network input that comprises (i) the updated setting defined by the current network output and (ii) the measure of the performance of the training process with the updated setting defined by the current network output.