Systems, methods, and apparatuses to predict protein sequence and structure

Techniques for predicting a protein sequence are described. An exemplary method includes receiving a request to predict a missing area of a protein's primary sequence and a corresponding three-dimensional position of the missing area; applying a machine learning model to backbone Cartesian coor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Vanessa, Seeger, Franziska, Ford, Alexander Sewall, Price, Layne Christopher, Sim, Yen Ling Adelene
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Techniques for predicting a protein sequence are described. An exemplary method includes receiving a request to predict a missing area of a protein's primary sequence and a corresponding three-dimensional position of the missing area; applying a machine learning model to backbone Cartesian coordinates of the protein's primary sequence and a protein vector of a representation of the protein's primary sequence including the missing area to predict a missing area of the protein primary sequence and a corresponding three-dimensional position for the missing area, wherein the machine learning model is selected from the group consisting of: an attention-based machine learning model, a bidirectional long short term memory-based model, and a convolutional neural network-based model; and outputting a result of the machine learning model.