Preparation process of multi-component spherical alloy powder

The present invention discloses a preparation process of multi-component spherical alloy powder, which adopts a plasma rotation electrode process (PREP) method to prepare the multi-component spherical alloy powder. The multi-component alloy includes at least one of refractory metals and compounds th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, Hongtao, You, Guangfei, Si, Xudong, Lu, Zhihui, Zhang, Leile, Wu, Yiyong, Sun, Zhiyang, Chen, Chao
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention discloses a preparation process of multi-component spherical alloy powder, which adopts a plasma rotation electrode process (PREP) method to prepare the multi-component spherical alloy powder. The multi-component alloy includes at least one of refractory metals and compounds thereof, specifically including tungsten, molybdenum, tantalum, niobium, rhenium, tungsten carbide, tantalum carbide and the like.The present invention adopts the PREP method to prepare the multi-component spherical alloy powder containing the refractory metals or compound thereof, and the prepared multi-component spherical alloy powder has high sphericity, good fluidity and high tap density, and is low in content of impurity elements and output of hollow powder and satellite powder; compared with other preparation methods, the prepared alloy powder has better performance and is an ideal material for metal 3D printing; and the present invention further solves the problem of difficulty in preparing a round rod with the refractory metals or compound thereof as a base material used in the PREP method, and provides a spatial structure meshing method, a direct element mixing method or a porous framework method to prepare a multi-component alloy rod.