Multi-channel machine learning model-based inversion

A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dai, Junwen, Wang, Xusong, Fouda, Ahmed
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dai, Junwen
Wang, Xusong
Fouda, Ahmed
description A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11914096B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11914096B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11914096B23</originalsourceid><addsrcrecordid>eNrjZDDxLc0pydRNzkjMy0vNUchNTM7IzEtVyElNLMrLzEtXyM1PSc3RTUosTk1RyMwrSy0qzszP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWhiYGlmZORsbEqAEAQrQtHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-channel machine learning model-based inversion</title><source>esp@cenet</source><creator>Dai, Junwen ; Wang, Xusong ; Fouda, Ahmed</creator><creatorcontrib>Dai, Junwen ; Wang, Xusong ; Fouda, Ahmed</creatorcontrib><description>A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=US&amp;NR=11914096B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=US&amp;NR=11914096B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dai, Junwen</creatorcontrib><creatorcontrib>Wang, Xusong</creatorcontrib><creatorcontrib>Fouda, Ahmed</creatorcontrib><title>Multi-channel machine learning model-based inversion</title><description>A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDxLc0pydRNzkjMy0vNUchNTM7IzEtVyElNLMrLzEtXyM1PSc3RTUosTk1RyMwrSy0qzszP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWhiYGlmZORsbEqAEAQrQtHQ</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Dai, Junwen</creator><creator>Wang, Xusong</creator><creator>Fouda, Ahmed</creator><scope>EVB</scope></search><sort><creationdate>20240227</creationdate><title>Multi-channel machine learning model-based inversion</title><author>Dai, Junwen ; Wang, Xusong ; Fouda, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11914096B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Dai, Junwen</creatorcontrib><creatorcontrib>Wang, Xusong</creatorcontrib><creatorcontrib>Fouda, Ahmed</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Junwen</au><au>Wang, Xusong</au><au>Fouda, Ahmed</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-channel machine learning model-based inversion</title><date>2024-02-27</date><risdate>2024</risdate><abstract>A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11914096B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Multi-channel machine learning model-based inversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dai,%20Junwen&rft.date=2024-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11914096B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true