Substrate process endpoint detection using machine learning

Methods and systems for detection of an endpoint of a substrate process are provided. A set of machine learning models are trained to provide a metrology measurement value associated with a particular type of metrology measurement for a substrate based on spectral data collected for the substrate. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lai, Wan Hsueh, Chen, Shu Yu, Lu, Pin Ham, Yao, Zhengping, Han, Pengyu, Egan, Todd, Lee, Chao-Hsien, Lian, Lei, Craver, Barry
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods and systems for detection of an endpoint of a substrate process are provided. A set of machine learning models are trained to provide a metrology measurement value associated with a particular type of metrology measurement for a substrate based on spectral data collected for the substrate. A respective machine learning model is selected to be applied to future spectral data collected during a future substrate process for a future substrate in view of a performance rating associated with the particular type of metrology measurement. Current spectral data is collected during a current process for a current substrate and provided as input to the respective machine learning model. An indication of a respective metrology measurement value corresponding to the current substrate is extracted from one or more outputs of the trained machine learning model. In response to a determination that the respective metrology measurement satisfies a metrology measurement criterion, an instruction including a command to terminate the current process is generated.