Machine-learnt field-specific standardization

A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgiev, Stanislav, Jagota, Arun Kumar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Georgiev, Stanislav
Jagota, Arun Kumar
description A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11886461B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11886461B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11886461B23</originalsourceid><addsrcrecordid>eNrjZND1TUzOyMxL1c1JTSzKK1FIy0zNSdEtLkhNzkzLTFYoLknMS0ksSsmsSizJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhYWZiZmhk5GxsSoAQDsZyq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learnt field-specific standardization</title><source>esp@cenet</source><creator>Georgiev, Stanislav ; Jagota, Arun Kumar</creator><creatorcontrib>Georgiev, Stanislav ; Jagota, Arun Kumar</creatorcontrib><description>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=US&amp;NR=11886461B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=US&amp;NR=11886461B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><title>Machine-learnt field-specific standardization</title><description>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND1TUzOyMxL1c1JTSzKK1FIy0zNSdEtLkhNzkzLTFYoLknMS0ksSsmsSizJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhYWZiZmhk5GxsSoAQDsZyq8</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Georgiev, Stanislav</creator><creator>Jagota, Arun Kumar</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Machine-learnt field-specific standardization</title><author>Georgiev, Stanislav ; Jagota, Arun Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11886461B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiev, Stanislav</au><au>Jagota, Arun Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learnt field-specific standardization</title><date>2024-01-30</date><risdate>2024</risdate><abstract>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11886461B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine-learnt field-specific standardization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Georgiev,%20Stanislav&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11886461B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true