Machine-learnt field-specific standardization
A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding st...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Georgiev, Stanislav Jagota, Arun Kumar |
description | A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11886461B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11886461B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11886461B23</originalsourceid><addsrcrecordid>eNrjZND1TUzOyMxL1c1JTSzKK1FIy0zNSdEtLkhNzkzLTFYoLknMS0ksSsmsSizJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhYWZiZmhk5GxsSoAQDsZyq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learnt field-specific standardization</title><source>esp@cenet</source><creator>Georgiev, Stanislav ; Jagota, Arun Kumar</creator><creatorcontrib>Georgiev, Stanislav ; Jagota, Arun Kumar</creatorcontrib><description>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=US&NR=11886461B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240130&DB=EPODOC&CC=US&NR=11886461B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><title>Machine-learnt field-specific standardization</title><description>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND1TUzOyMxL1c1JTSzKK1FIy0zNSdEtLkhNzkzLTFYoLknMS0ksSsmsSizJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhYWZiZmhk5GxsSoAQDsZyq8</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Georgiev, Stanislav</creator><creator>Jagota, Arun Kumar</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Machine-learnt field-specific standardization</title><author>Georgiev, Stanislav ; Jagota, Arun Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11886461B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiev, Stanislav</au><au>Jagota, Arun Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learnt field-specific standardization</title><date>2024-01-30</date><risdate>2024</risdate><abstract>A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11886461B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Machine-learnt field-specific standardization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Georgiev,%20Stanislav&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11886461B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |