Machine-learnt field-specific standardization

A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgiev, Stanislav, Jagota, Arun Kumar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system tokenizes raw values and corresponding standardized values into raw token sequences and corresponding standardized token sequences. A machine-learning model learns standardization from token insertions and token substitutions that modify the raw token sequences to match the corresponding standardized token sequences. The system tokenizes an input value into an input token sequence. The machine-learning model determines a probability of inserting an insertion token after an insertion markable token in the input token sequence. If the probability of inserting the insertion token satisfies a threshold, the system inserts the insertion token after the insertion markable token in the input token sequence. The machine-learning model determines a probability of substituting a substitution token for a substitutable token in the input token sequence. If the probability of substituting the substitution token satisfies another threshold, the system substitutes the substitution token for the substitutable token in the input token sequence.