Training action selection neural networks using apprenticeship

An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vecerik, Mel, Heess, Nicolas Manfred Otto, Scholz, Jonathan Karl, Riedmiller, Martin, Lampe, Thomas, Piot, Bilal, Rothoerl, Thomas, Pietquin, Olivier Claude, Fumin, Wang, Hester, Todd Andrew
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vecerik, Mel
Heess, Nicolas Manfred Otto
Scholz, Jonathan Karl
Riedmiller, Martin
Lampe, Thomas
Piot, Bilal
Rothoerl, Thomas
Pietquin, Olivier Claude
Fumin, Wang
Hester, Todd Andrew
description An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11868882B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11868882B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11868882B23</originalsourceid><addsrcrecordid>eNrjZLALKUrMzMvMS1dITC7JzM9TKE7NSYWw8lJLixJzgFRJeX5RdrFCaTFYWUFBUWpeSWZyanFGZgEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTgXqjw8NNjS0MLOwsDByMjImRg0Awnkxtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training action selection neural networks using apprenticeship</title><source>esp@cenet</source><creator>Vecerik, Mel ; Heess, Nicolas Manfred Otto ; Scholz, Jonathan Karl ; Riedmiller, Martin ; Lampe, Thomas ; Piot, Bilal ; Rothoerl, Thomas ; Pietquin, Olivier Claude ; Fumin, Wang ; Hester, Todd Andrew</creator><creatorcontrib>Vecerik, Mel ; Heess, Nicolas Manfred Otto ; Scholz, Jonathan Karl ; Riedmiller, Martin ; Lampe, Thomas ; Piot, Bilal ; Rothoerl, Thomas ; Pietquin, Olivier Claude ; Fumin, Wang ; Hester, Todd Andrew</creatorcontrib><description>An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=US&amp;NR=11868882B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240109&amp;DB=EPODOC&amp;CC=US&amp;NR=11868882B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vecerik, Mel</creatorcontrib><creatorcontrib>Heess, Nicolas Manfred Otto</creatorcontrib><creatorcontrib>Scholz, Jonathan Karl</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Lampe, Thomas</creatorcontrib><creatorcontrib>Piot, Bilal</creatorcontrib><creatorcontrib>Rothoerl, Thomas</creatorcontrib><creatorcontrib>Pietquin, Olivier Claude</creatorcontrib><creatorcontrib>Fumin, Wang</creatorcontrib><creatorcontrib>Hester, Todd Andrew</creatorcontrib><title>Training action selection neural networks using apprenticeship</title><description>An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALKUrMzMvMS1dITC7JzM9TKE7NSYWw8lJLixJzgFRJeX5RdrFCaTFYWUFBUWpeSWZyanFGZgEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTgXqjw8NNjS0MLOwsDByMjImRg0Awnkxtg</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Vecerik, Mel</creator><creator>Heess, Nicolas Manfred Otto</creator><creator>Scholz, Jonathan Karl</creator><creator>Riedmiller, Martin</creator><creator>Lampe, Thomas</creator><creator>Piot, Bilal</creator><creator>Rothoerl, Thomas</creator><creator>Pietquin, Olivier Claude</creator><creator>Fumin, Wang</creator><creator>Hester, Todd Andrew</creator><scope>EVB</scope></search><sort><creationdate>20240109</creationdate><title>Training action selection neural networks using apprenticeship</title><author>Vecerik, Mel ; Heess, Nicolas Manfred Otto ; Scholz, Jonathan Karl ; Riedmiller, Martin ; Lampe, Thomas ; Piot, Bilal ; Rothoerl, Thomas ; Pietquin, Olivier Claude ; Fumin, Wang ; Hester, Todd Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11868882B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Vecerik, Mel</creatorcontrib><creatorcontrib>Heess, Nicolas Manfred Otto</creatorcontrib><creatorcontrib>Scholz, Jonathan Karl</creatorcontrib><creatorcontrib>Riedmiller, Martin</creatorcontrib><creatorcontrib>Lampe, Thomas</creatorcontrib><creatorcontrib>Piot, Bilal</creatorcontrib><creatorcontrib>Rothoerl, Thomas</creatorcontrib><creatorcontrib>Pietquin, Olivier Claude</creatorcontrib><creatorcontrib>Fumin, Wang</creatorcontrib><creatorcontrib>Hester, Todd Andrew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vecerik, Mel</au><au>Heess, Nicolas Manfred Otto</au><au>Scholz, Jonathan Karl</au><au>Riedmiller, Martin</au><au>Lampe, Thomas</au><au>Piot, Bilal</au><au>Rothoerl, Thomas</au><au>Pietquin, Olivier Claude</au><au>Fumin, Wang</au><au>Hester, Todd Andrew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training action selection neural networks using apprenticeship</title><date>2024-01-09</date><risdate>2024</risdate><abstract>An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11868882B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Training action selection neural networks using apprenticeship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vecerik,%20Mel&rft.date=2024-01-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11868882B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true