Training action selection neural networks using apprenticeship

An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vecerik, Mel, Heess, Nicolas Manfred Otto, Scholz, Jonathan Karl, Riedmiller, Martin, Lampe, Thomas, Piot, Bilal, Rothoerl, Thomas, Pietquin, Olivier Claude, Fumin, Wang, Hester, Todd Andrew
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An off-policy reinforcement learning actor-critic neural network system configured to select actions from a continuous action space to be performed by an agent interacting with an environment to perform a task. An observation defines environment state data and reward data. The system has an actor neural network which learns a policy function mapping the state data to action data. A critic neural network learns an action-value (Q) function. A replay buffer stores tuples of the state data, the action data, the reward data and new state data. The replay buffer also includes demonstration transition data comprising a set of the tuples from a demonstration of the task within the environment. The neural network system is configured to train the actor neural network and the critic neural network off-policy using stored tuples from the replay buffer comprising tuples both from operation of the system and from the demonstration transition data.