System for multi-perspective discourse within a dialog
Techniques are described for training and/or utilizing sub-agent machine learning models to generate candidate dialog responses. In various implementations, a user-facing dialog agent (202, 302), or another component on its behalf, selects one of the candidate responses which is closest to user defi...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques are described for training and/or utilizing sub-agent machine learning models to generate candidate dialog responses. In various implementations, a user-facing dialog agent (202, 302), or another component on its behalf, selects one of the candidate responses which is closest to user defined global priority objectives (318). Global priority objectives can include values (306) for a variety of dialog features such as emotion, confusion, objective-relatedness, personality, verbosity, etc. In various implementations, each machine learning model includes an encoder portion and a decoder portion. Each encoder portion and decoder portion can be a recurrent neural network (RNN) model, such as a RNN model that includes at least one memory layer, such as a long short-term memory (LSTM) layer. |
---|