Compression switching for federated learning
Methods for compression switching that includes distributing a model to client nodes, which use the model to generate a gradient vector (GV) based on a client node data set. The method includes receiving a model update that includes a gradient sign vector (GSV) based on the gradient vector; generati...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods for compression switching that includes distributing a model to client nodes, which use the model to generate a gradient vector (GV) based on a client node data set. The method includes receiving a model update that includes a gradient sign vector (GSV) based on the gradient vector; generating an updated model using the GSV; and distributing the updated model to the client nodes. The client node uses the updated model to generate a second GV based on a second client node data set. The method also includes a determination that a compression switch condition exists; based on the determination, transmitting an instruction to the client node to perform a compression switch; receiving, in response to the instruction, another model update including a subset GSV based on the second gradient vector; generating a second updated model using the subset GSV; and distributing the second updated model to the client nodes. |
---|