Computing trade-offs between privacy and accuracy of data analysis
In an approach for computing trade-offs between privacy and accuracy of data analysis on building a learning model, a processor receives a dataset for training a model. The dataset includes one or more pre-identified sensitive data fields. The processor determines a weight of each sensitive data fie...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an approach for computing trade-offs between privacy and accuracy of data analysis on building a learning model, a processor receives a dataset for training a model. The dataset includes one or more pre-identified sensitive data fields. The processor determines a weight of each sensitive data field for the model. The processor evaluates resource cost of applying a privacy preservation technique to the one or more pre-identified sensitive data fields. The processor identifies correlation among the sensitive data fields. The processor presents a comparison of options for training the model, in terms of tradeoffs of accuracy for training the model and the resource cost of the privacy preservation technique. |
---|