Optimizing machine learning based on embedding smart data drift

Techniques for optimizing a machine learning model. The techniques can include: obtaining one or more embedding vectors based on a prediction of a machine learning model; mapping the embedding vectors from a higher dimensional space to a 2D/3D space to generate one or more high density points in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dhinakaran, Aparna, Carrasco, Francisco Castillo, Schiff, Michael, Lopatecki, Jason, Mar, Nathaniel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Techniques for optimizing a machine learning model. The techniques can include: obtaining one or more embedding vectors based on a prediction of a machine learning model; mapping the embedding vectors from a higher dimensional space to a 2D/3D space to generate one or more high density points in the 2D/3D space; clustering the high-density points by running a clustering algorithm multiple times, each time with a different set of parameters to generate one or more clusters; applying a purity metric to each cluster to generate a normalized purity score of each cluster; identifying one or more clusters with a normalized purity score lower than a threshold; and optimizing the identifying one or more clusters.