Optimizing machine learning based on embedding smart data drift
Techniques for optimizing a machine learning model. The techniques can include: obtaining one or more embedding vectors based on a prediction of a machine learning model; mapping the embedding vectors from a higher dimensional space to a 2D/3D space to generate one or more high density points in the...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques for optimizing a machine learning model. The techniques can include: obtaining one or more embedding vectors based on a prediction of a machine learning model; mapping the embedding vectors from a higher dimensional space to a 2D/3D space to generate one or more high density points in the 2D/3D space; clustering the high-density points by running a clustering algorithm multiple times, each time with a different set of parameters to generate one or more clusters; applying a purity metric to each cluster to generate a normalized purity score of each cluster; identifying one or more clusters with a normalized purity score lower than a threshold; and optimizing the identifying one or more clusters. |
---|