Hand pose estimation

A neural network in multi-task deep learning paradigm for machine vision includes an encoder that further includes a first, a second, and a third tier. The first tier comprises a first-tier unit having one or more first-unit blocks. The second tier receives a first-tier output from the first tier at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinha, Ayan Tuhinendu, Rao, Adithya Shricharan Srinivasa, Lee, Douglas Bertram, Chidananda, Prajwal, Rabinovich, Andrew
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A neural network in multi-task deep learning paradigm for machine vision includes an encoder that further includes a first, a second, and a third tier. The first tier comprises a first-tier unit having one or more first-unit blocks. The second tier receives a first-tier output from the first tier at one or more second-tier units in the second tier, a second-tier unit comprises one or more second-tier blocks, the third tier receives a second-tier output from the second tier at one or more third-tier units in the third tier, and a third-tier block comprises one or more third-tier blocks. The neural network further comprises a decoder operatively the encoder to receive an encoder output from the encoder as well as one or more loss function layers that are configured to backpropagate one or more losses for training at least the encoder of the neural network in a deep learning paradigm.