Slipform paver and method for operating a slipform paver
The invention relates to a self-propelled construction machine and to a method for controlling a self-propelled construction machine. The construction machine according to the invention has a position-determining device 13 for determining the position of a reference point R on the construction machi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention relates to a self-propelled construction machine and to a method for controlling a self-propelled construction machine. The construction machine according to the invention has a position-determining device 13 for determining the position of a reference point R on the construction machine in a coordinate system (X, Y, Z) independent of the construction machine. The position-determining device has a navigation satellite system receiver 14 for receiving satellite signals from a global navigation satellite system 15 (GNSS) and a computing unit 16 which is configured so that the position of a reference point (R) on the construction machine and the orientation (ψ) of the construction machine can be determined based on the satellite signals in a coordinate system (X, Y, Z) that is independent of the construction machine. Moreover, the construction machine has a controller 18 which cooperates with the position-determining device 13 configured to adjust the steering angles of the steerable running gears 3, 4, 6 so that the reference point R of the construction machine moves along a set trajectory T. The computing unit 16 of the position-determining device 13 is configured so that, in a control mode in which the control of the construction machine is not based on the satellite signals of the global navigation satellite system 15, the position (xn, yn, zn) of the reference point (R) relating to the construction machine and the orientation (ψ) of the construction machine are determined in the coordinate system (X, Y, Z) that is independent of the construction machine while the construction machine is moving on the basis of a kinematic model 16A implemented in the computing unit 16 of the position-determining device 13 which describes the position (P) of the reference point (R) and the orientation (ψ) in the coordinate system (X, Y, Z) that is independent of the construction machine depending on the steering angles and the speeds of the running gears 3, 4, 6. |
---|