Gain-boosted class-AB differential residue amplifier in a pipelined Analog-to-Digital Converter (ADC) using switched-capacitor common-mode feedback to eliminate tail current sources
A differential residue amplifier fits between Analog-to-Digital Converter (ADC) stages. Switched-Capacitor Common-Mode Feedback circuits determine voltage shifts. An AC-coupled input network uses switched capacitors to shift upward voltages of the differential inputs to the residue amplifier to appl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A differential residue amplifier fits between Analog-to-Digital Converter (ADC) stages. Switched-Capacitor Common-Mode Feedback circuits determine voltage shifts. An AC-coupled input network uses switched capacitors to shift upward voltages of the differential inputs to the residue amplifier to apply to an upper pair of p-channel differential transistors with sources connected to the power supply. The AC-coupled input network also shifts downward in voltage the differential inputs to the residue amplifier to apply to a lower pair of n-channel differential transistors with grounded sources. The drains of the p-channel differential transistors connect to differential outputs through p-channel cascode transistors. N-channel cascode transistors connect the drains of the n-channel differential transistors to the differential outputs. The drains of differential transistors can be input to differential amplifiers to drive the gates of the cascode transistors for gain boosting. No tail current is used, allowing for wider output-voltage swings with low supply voltages. |
---|