Crop yield estimation method based on deep temporal and spatial feature combined learning

A crop yield estimation method based on spatio-temporal deep learning including: obtaining regional historical crop yield data and meteorological data, preprocessing the meteorological data and the yield data to respectively obtain meteorological parameters and a detrended yield as input and output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhong, Renhai, Lin, Tao, Ying, Yibin, Ting, Kuan-Chong, Xu, Jinfan, Jiang, Hao
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A crop yield estimation method based on spatio-temporal deep learning including: obtaining regional historical crop yield data and meteorological data, preprocessing the meteorological data and the yield data to respectively obtain meteorological parameters and a detrended yield as input and output of the crop yield spatio-temporal deep learning model; constructing the spatio-temporal deep learning model for crop yield estimation, and optimizing hyperparameters; and building a training set by taking the meteorological parameters as an input and the detrended yield as output to train the model and obtain parameters of the model; for the crop yield to be estimated, feeding meteorological parameters into the trained model, and obtaining the crop yield estimation result. The model combined temporal and spatial learning to achieve better crop yield estimation accuracy and stability at large spatial scales.