Crash localization using crash frame sequence labelling

Machine-learned prediction of a blame frame of a crash stack. Specifically, a crash stack associated with a crash is parsed into a sequence of frames. The blame frame of the crash stack is estimated by, for each of a plurality of the sequence of frames, identifying a plurality of features of the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bowles, Sean A, Bansal, Chetan, Nath, Suman Kumar, Molahalli, Manish Shetty, Arman, Kamil Ozgur, Wang, Haitao, Ahari, Siamak
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine-learned prediction of a blame frame of a crash stack. Specifically, a crash stack associated with a crash is parsed into a sequence of frames. The blame frame of the crash stack is estimated by, for each of a plurality of the sequence of frames, identifying a plurality of features of the corresponding frame, feeding the plurality of features to a neural network, and using the output of the neural network to make a prediction on whether the corresponding frame is a blame frame of the crash. If this is done during training time, the predicted blame frame can be compared against the actual blame frame, resulting in an adjustment of the neural network. Through appropriate featurization of the frames, and by use of the neural network, the prediction can be made cross-application and considering the context of the frame within the crash stack.