Contextual biasing of neural language models using metadata from a natural language understanding component and embedded recent history
Techniques for implementing a chatbot that utilizes context embeddings are described. An exemplary method includes determining a next turn by: applying a language model to the utterance to determine a probability of a sequence of words, generating a context embedding for the utterance based at least...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques for implementing a chatbot that utilizes context embeddings are described. An exemplary method includes determining a next turn by: applying a language model to the utterance to determine a probability of a sequence of words, generating a context embedding for the utterance based at least on one or more of: a dialog act as defined by a chatbot definition of the chatbot, a topic vector identifying a domain of the chatbot, a previous chatbot response, and one or more slot options; performing neural language model rescoring using the determined probability of a sequence of words as a word embedding and the generated context embedding to predict an hypothesis; determining at least a name of a slot and type to be fulfilled based at least in part on the hypothesis and the chatbot definition; and determining a next turn based at least in part on the chatbot definition, any previous state, and the name of the slot and type to be fulfilled. |
---|