Semantic text comparison using artificial intelligence identified source document topics
A computer assigns a similarity value to a comparison document. The computer receives, reference document contextual word embeddings in first set of topic clusters, each with a representative embedding. The computer receives comparison document contextual word embeddings. The computer determines, us...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computer assigns a similarity value to a comparison document. The computer receives, reference document contextual word embeddings in first set of topic clusters, each with a representative embedding. The computer receives comparison document contextual word embeddings. The computer determines, using a trained neural network model classifier, for each comparison document contextual word embedding, topic correspondence values relative to the representative embeddings of said first set of clusters. The computer generates a second set of clusters by assigning comparison document embeddings to best matching one of the first clusters, according to the topic correspondence values. The computer determines a second set of representative embeddings and uses a comparison method, to determine a cluster similarity value for second set clusters compared to first set representative embeddings. The computer determines document similarity values based, at least in part, on at least one of cluster similarity values. |
---|