Compute-aware resource configurations for a radio access network

Aspects of the present disclosure relate to allocating RAN resources among RAN slices using a machine learning model. In examples, the machine learning model may determine an optimal RAN resource configuration based on compute power needs. As a result, RAN resource allocation generation and compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Balasingam, Arjun Varman, Bahl, Paramvir, Kotaru, Manikanta
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aspects of the present disclosure relate to allocating RAN resources among RAN slices using a machine learning model. In examples, the machine learning model may determine an optimal RAN resource configuration based on compute power needs. As a result, RAN resource allocation generation and compute power requirements may improve, even in instances with changing or unknown network conditions. In examples, a prediction engine may receive communication parameters and/or requirements associated with service-level agreements (SLAs) for applications executing at least partially at a device in communication with the RAN. The RAN may generate one or more RAN resource configuration for implementation among RAN slices. Upon a change in network conditions or SLA requirements, an optimal RAN configuration may be determined in terms of required compute power.