Exploiting oxygen inhibited photopolymerization within emulsion droplets for the fabrication of microparticles with customizable properties

Described are methods and devices for the generation of hydrogel particles with micrometer and submicrometer dimensions using oxygen-inhibited partial polymerization, and the particles generated therefrom. The described methods generate particles with dimensions independent of the starting polymeriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frick, Carl, Shaha, Rajib, Li-Oakey, Katie Dongmei, Oakey, John, Debroy, Daniel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Described are methods and devices for the generation of hydrogel particles with micrometer and submicrometer dimensions using oxygen-inhibited partial polymerization, and the particles generated therefrom. The described methods generate particles with dimensions independent of the starting polymerizable solution dimension, for example, a microdroplet. Further, microfluidic flow parameters (e.g. viscosity, flow rate) and photopolymerization process parameters (e.g. optical exposure intensity and duration) are controlled to generate particles with tunable crosslinking density-determined properties including elasticity, diffusivity, and biomolecular display for diverse applications such as drug delivery, tissue engineering cell scaffolds, and single- and multiple- cell therapeutics. Similarly, gradients of crosslinking density-determined properties can be created within single particles through the selection of optical exposure intensity and duration. In addition to conventional spherical shapes, a suite of non-spherical shapes may be generated by manipulating the dimensions of the microfluidic channels and other related physical and process parameters.