Quality monitoring and hidden quantization in artificial neural network computations
Systems and methods for quality monitoring and hidden quantization in artificial neural network (ANN) computations are provided. An example method may include receiving a description of an ANN and input data associated with the ANN, performing, based on a quantization scheme, quantization of the ANN...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Larzul, Ludovic Dumoulin, Frederic |
description | Systems and methods for quality monitoring and hidden quantization in artificial neural network (ANN) computations are provided. An example method may include receiving a description of an ANN and input data associated with the ANN, performing, based on a quantization scheme, quantization of the ANN to obtain a quantized ANN, performing, based on the set of input data, ANN computations of the quantized ANN to obtain a result of the ANN computation for the input data, while performing the ANN computations, monitoring, a measure of quality of the ANN computations of the quantized ANN, determining that the measure of quality does not satisfy quality requirements, and in response to the determination, informing a user of an external system of the measure of quality, and adjusting, based on the measure of quality, the quantization scheme to be used in the ANN computations for further input data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11625583B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11625583B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11625583B23</originalsourceid><addsrcrecordid>eNqNyzEOwjAMQNEsDAi4gzkAQ1sVMYNArIgyV1bigkXqhNQRgtODKg7A9Jf3p6Y5ZfSsL-iDsIbEcgUUBzd2jgQeGUX5jcpBgAUwKXdsGT0I5TRGnyHdwYY-Zh3hMDeTDv1Ai19nZnnYN7vjimJoaYho6bu1l3NRrMu63lTbsvrHfAArtjoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Quality monitoring and hidden quantization in artificial neural network computations</title><source>esp@cenet</source><creator>Larzul, Ludovic ; Dumoulin, Frederic</creator><creatorcontrib>Larzul, Ludovic ; Dumoulin, Frederic</creatorcontrib><description>Systems and methods for quality monitoring and hidden quantization in artificial neural network (ANN) computations are provided. An example method may include receiving a description of an ANN and input data associated with the ANN, performing, based on a quantization scheme, quantization of the ANN to obtain a quantized ANN, performing, based on the set of input data, ANN computations of the quantized ANN to obtain a result of the ANN computation for the input data, while performing the ANN computations, monitoring, a measure of quality of the ANN computations of the quantized ANN, determining that the measure of quality does not satisfy quality requirements, and in response to the determination, informing a user of an external system of the measure of quality, and adjusting, based on the measure of quality, the quantization scheme to be used in the ANN computations for further input data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=US&NR=11625583B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=US&NR=11625583B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Larzul, Ludovic</creatorcontrib><creatorcontrib>Dumoulin, Frederic</creatorcontrib><title>Quality monitoring and hidden quantization in artificial neural network computations</title><description>Systems and methods for quality monitoring and hidden quantization in artificial neural network (ANN) computations are provided. An example method may include receiving a description of an ANN and input data associated with the ANN, performing, based on a quantization scheme, quantization of the ANN to obtain a quantized ANN, performing, based on the set of input data, ANN computations of the quantized ANN to obtain a result of the ANN computation for the input data, while performing the ANN computations, monitoring, a measure of quality of the ANN computations of the quantized ANN, determining that the measure of quality does not satisfy quality requirements, and in response to the determination, informing a user of an external system of the measure of quality, and adjusting, based on the measure of quality, the quantization scheme to be used in the ANN computations for further input data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEOwjAMQNEsDAi4gzkAQ1sVMYNArIgyV1bigkXqhNQRgtODKg7A9Jf3p6Y5ZfSsL-iDsIbEcgUUBzd2jgQeGUX5jcpBgAUwKXdsGT0I5TRGnyHdwYY-Zh3hMDeTDv1Ai19nZnnYN7vjimJoaYho6bu1l3NRrMu63lTbsvrHfAArtjoo</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Larzul, Ludovic</creator><creator>Dumoulin, Frederic</creator><scope>EVB</scope></search><sort><creationdate>20230411</creationdate><title>Quality monitoring and hidden quantization in artificial neural network computations</title><author>Larzul, Ludovic ; Dumoulin, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11625583B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Larzul, Ludovic</creatorcontrib><creatorcontrib>Dumoulin, Frederic</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Larzul, Ludovic</au><au>Dumoulin, Frederic</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Quality monitoring and hidden quantization in artificial neural network computations</title><date>2023-04-11</date><risdate>2023</risdate><abstract>Systems and methods for quality monitoring and hidden quantization in artificial neural network (ANN) computations are provided. An example method may include receiving a description of an ANN and input data associated with the ANN, performing, based on a quantization scheme, quantization of the ANN to obtain a quantized ANN, performing, based on the set of input data, ANN computations of the quantized ANN to obtain a result of the ANN computation for the input data, while performing the ANN computations, monitoring, a measure of quality of the ANN computations of the quantized ANN, determining that the measure of quality does not satisfy quality requirements, and in response to the determination, informing a user of an external system of the measure of quality, and adjusting, based on the measure of quality, the quantization scheme to be used in the ANN computations for further input data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11625583B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Quality monitoring and hidden quantization in artificial neural network computations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Larzul,%20Ludovic&rft.date=2023-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11625583B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |