Adaptable on-deployment learning platform for driver analysis output generation
Aspects of the disclosure relate to enhanced processing systems for providing dynamic driving metric outputs using improved machine learning methods. A computing platform may receive sensor data from vehicle sensors. The computing platform may generate a pattern deviation output corresponding to an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aspects of the disclosure relate to enhanced processing systems for providing dynamic driving metric outputs using improved machine learning methods. A computing platform may receive sensor data from vehicle sensors. The computing platform may generate a pattern deviation output corresponding to an output of a sensor data analysis model, an actual outcome associated with a lowest TTC value, and driving actions that occurred over a prediction horizon corresponding to the pattern deviation output. The computing platform may cluster the pattern deviation outputs to maximize a ratio of inter-cluster variance to intra-cluster variance. The computing platform may train a long short term memory (LSTM) for each cluster, and may verify consistency of the pattern deviation outputs in the respective clusters. After verifying the consistency of the pattern deviation outputs in each cluster, the computing platform may modify the sensor data analysis model to reflect pattern deviation outputs associated with verified consistency. |
---|