Wafer asset modeling using language processing methods
A computing device includes a processor and a storage device. A wafer asset modeling module is stored in the storage device and is executed by the processor to configure the computing device to perform acts identifying and clustering a plurality of assets based on static properties of a wafer asset...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computing device includes a processor and a storage device. A wafer asset modeling module is stored in the storage device and is executed by the processor to configure the computing device to perform acts identifying and clustering a plurality of assets based on static properties of a wafer asset using a first module of the wafer asset modeling module. The clustered plurality of assets is determined based on dynamic properties of the wafer asset using a second module of the wafer asset modeling module. Event prediction is performed by converting a numeric data of the clustered plurality of assets to a natural language processing (NLP) domain by a third module of the wafer asset modeling module. One or more sequence-to-sequence methods are performed to predict a malfunction of a component of the wafer asset and/or an event based on past patterns. Prediction information is stored in the storage device. |
---|