Detection of runtime errors using machine learning
Runtime errors in a source code program are detected in advance of execution by machine learning models. Features representing a context of a runtime error are extracted from source code programs to train a machine learning model, such as a random forest classifier, to predict the likelihood that a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Runtime errors in a source code program are detected in advance of execution by machine learning models. Features representing a context of a runtime error are extracted from source code programs to train a machine learning model, such as a random forest classifier, to predict the likelihood that a code snippet has a particular type of runtime error. The features are extracted from a syntax-type tree representation of each method in a program. A model is generated for distinct runtime errors, such as arithmetic overflow, and conditionally uninitialized variables. |
---|