Methods and systems for predicting pressure maps of 3D objects from 2D photos using deep learning
A structured 3D model of a real-world object is generated from a series of 2D photographs of the object, using photogrammetry, a keypoint detection deep learning network (DLN), and retopology. In addition, object parameters of the object are received. A pressure map of the object is then generated b...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A structured 3D model of a real-world object is generated from a series of 2D photographs of the object, using photogrammetry, a keypoint detection deep learning network (DLN), and retopology. In addition, object parameters of the object are received. A pressure map of the object is then generated by a pressure estimation DLN based on the structured 3D model and the object parameters. The pressure estimation DLN was trained on structured 3D models, object parameters, and pressure maps of a plurality of objects belonging to a given object category. The pressure map of the real-world object can be used in downstream processes, such as custom manufacturing. |
---|