Generating saliency masks for inputs of models using saliency metric

An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ratner, Vadim, Shoshan, Yoel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ratner, Vadim
Shoshan, Yoel
description An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the model constant. The processor is to also detect that a predefined number of iterations is exceeded or a convergence of values of the perturbed input. The processor is to further generate a saliency mask based on a perturbation of the perturbed input in response to detecting the predefined number of iterations is exceeded or the convergence.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11568183B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11568183B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11568183B23</originalsourceid><addsrcrecordid>eNrjZHBxT81LLUosycxLVyhOzMlMzUuuVMhNLM4uVkjLL1LIzCsoLSlWyE9TyM1PSc0pVigtRlWZWlKUmczDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTgZaUxIcGGxqamlkYWhg7GRkTowYA2gkzQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Generating saliency masks for inputs of models using saliency metric</title><source>esp@cenet</source><creator>Ratner, Vadim ; Shoshan, Yoel</creator><creatorcontrib>Ratner, Vadim ; Shoshan, Yoel</creatorcontrib><description>An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the model constant. The processor is to also detect that a predefined number of iterations is exceeded or a convergence of values of the perturbed input. The processor is to further generate a saliency mask based on a perturbation of the perturbed input in response to detecting the predefined number of iterations is exceeded or the convergence.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=US&amp;NR=11568183B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=US&amp;NR=11568183B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ratner, Vadim</creatorcontrib><creatorcontrib>Shoshan, Yoel</creatorcontrib><title>Generating saliency masks for inputs of models using saliency metric</title><description>An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the model constant. The processor is to also detect that a predefined number of iterations is exceeded or a convergence of values of the perturbed input. The processor is to further generate a saliency mask based on a perturbation of the perturbed input in response to detecting the predefined number of iterations is exceeded or the convergence.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxT81LLUosycxLVyhOzMlMzUuuVMhNLM4uVkjLL1LIzCsoLSlWyE9TyM1PSc0pVigtRlWZWlKUmczDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTgZaUxIcGGxqamlkYWhg7GRkTowYA2gkzQQ</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Ratner, Vadim</creator><creator>Shoshan, Yoel</creator><scope>EVB</scope></search><sort><creationdate>20230131</creationdate><title>Generating saliency masks for inputs of models using saliency metric</title><author>Ratner, Vadim ; Shoshan, Yoel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11568183B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ratner, Vadim</creatorcontrib><creatorcontrib>Shoshan, Yoel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ratner, Vadim</au><au>Shoshan, Yoel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Generating saliency masks for inputs of models using saliency metric</title><date>2023-01-31</date><risdate>2023</risdate><abstract>An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the model constant. The processor is to also detect that a predefined number of iterations is exceeded or a convergence of values of the perturbed input. The processor is to further generate a saliency mask based on a perturbation of the perturbed input in response to detecting the predefined number of iterations is exceeded or the convergence.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11568183B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Generating saliency masks for inputs of models using saliency metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ratner,%20Vadim&rft.date=2023-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11568183B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true