Generating saliency masks for inputs of models using saliency metric

An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ratner, Vadim, Shoshan, Yoel
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An example system includes a processor to receive an input and a model trained to classify inputs. The processor is to iteratively generate a perturbed input that optimizes a saliency metric including a classification term, a sparsity term, and a smoothness term, while keeping parameters of the model constant. The processor is to also detect that a predefined number of iterations is exceeded or a convergence of values of the perturbed input. The processor is to further generate a saliency mask based on a perturbation of the perturbed input in response to detecting the predefined number of iterations is exceeded or the convergence.