Adaptable filtering for edge-based deep learning models

Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Perumalla, Poorna Chand Srinivas, Calleja, Eduardo Manuel, Nookula, Nagajyothi, Jindia, Aashish, Hanumaiah, Vinay
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Perumalla, Poorna Chand Srinivas
Calleja, Eduardo Manuel
Nookula, Nagajyothi
Jindia, Aashish
Hanumaiah, Vinay
description Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic device, enabling successful operation despite the input data stream potentially being generated at a higher rate than a rate in which the ML model can be executed. The filter can be a differential-type filter that generates difference representations between consecutive elements of the data stream to determine which elements are to be passed on for the ML model, a "smart" filter such as a neural network trained using outputs from the ML model allowing the filter to "learn" which elements are the most likely to be of value to be passed on, or a combination of both.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11544577B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11544577B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11544577B13</originalsourceid><addsrcrecordid>eNrjZDB3TEksKElMyklVSMvMKUktysxLV0jLL1JITUlP1U1KLE5NUUhJTS1QyElNLMoDSebmp6TmFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDUxMTU3NzJ0NjYtQAALQfLdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptable filtering for edge-based deep learning models</title><source>esp@cenet</source><creator>Perumalla, Poorna Chand Srinivas ; Calleja, Eduardo Manuel ; Nookula, Nagajyothi ; Jindia, Aashish ; Hanumaiah, Vinay</creator><creatorcontrib>Perumalla, Poorna Chand Srinivas ; Calleja, Eduardo Manuel ; Nookula, Nagajyothi ; Jindia, Aashish ; Hanumaiah, Vinay</creatorcontrib><description>Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic device, enabling successful operation despite the input data stream potentially being generated at a higher rate than a rate in which the ML model can be executed. The filter can be a differential-type filter that generates difference representations between consecutive elements of the data stream to determine which elements are to be passed on for the ML model, a "smart" filter such as a neural network trained using outputs from the ML model allowing the filter to "learn" which elements are the most likely to be of value to be passed on, or a combination of both.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=US&amp;NR=11544577B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=US&amp;NR=11544577B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Perumalla, Poorna Chand Srinivas</creatorcontrib><creatorcontrib>Calleja, Eduardo Manuel</creatorcontrib><creatorcontrib>Nookula, Nagajyothi</creatorcontrib><creatorcontrib>Jindia, Aashish</creatorcontrib><creatorcontrib>Hanumaiah, Vinay</creatorcontrib><title>Adaptable filtering for edge-based deep learning models</title><description>Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic device, enabling successful operation despite the input data stream potentially being generated at a higher rate than a rate in which the ML model can be executed. The filter can be a differential-type filter that generates difference representations between consecutive elements of the data stream to determine which elements are to be passed on for the ML model, a "smart" filter such as a neural network trained using outputs from the ML model allowing the filter to "learn" which elements are the most likely to be of value to be passed on, or a combination of both.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3TEksKElMyklVSMvMKUktysxLV0jLL1JITUlP1U1KLE5NUUhJTS1QyElNLMoDSebmp6TmFPMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDUxMTU3NzJ0NjYtQAALQfLdA</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Perumalla, Poorna Chand Srinivas</creator><creator>Calleja, Eduardo Manuel</creator><creator>Nookula, Nagajyothi</creator><creator>Jindia, Aashish</creator><creator>Hanumaiah, Vinay</creator><scope>EVB</scope></search><sort><creationdate>20230103</creationdate><title>Adaptable filtering for edge-based deep learning models</title><author>Perumalla, Poorna Chand Srinivas ; Calleja, Eduardo Manuel ; Nookula, Nagajyothi ; Jindia, Aashish ; Hanumaiah, Vinay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11544577B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Perumalla, Poorna Chand Srinivas</creatorcontrib><creatorcontrib>Calleja, Eduardo Manuel</creatorcontrib><creatorcontrib>Nookula, Nagajyothi</creatorcontrib><creatorcontrib>Jindia, Aashish</creatorcontrib><creatorcontrib>Hanumaiah, Vinay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perumalla, Poorna Chand Srinivas</au><au>Calleja, Eduardo Manuel</au><au>Nookula, Nagajyothi</au><au>Jindia, Aashish</au><au>Hanumaiah, Vinay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptable filtering for edge-based deep learning models</title><date>2023-01-03</date><risdate>2023</risdate><abstract>Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic device, enabling successful operation despite the input data stream potentially being generated at a higher rate than a rate in which the ML model can be executed. The filter can be a differential-type filter that generates difference representations between consecutive elements of the data stream to determine which elements are to be passed on for the ML model, a "smart" filter such as a neural network trained using outputs from the ML model allowing the filter to "learn" which elements are the most likely to be of value to be passed on, or a combination of both.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11544577B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Adaptable filtering for edge-based deep learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Perumalla,%20Poorna%20Chand%20Srinivas&rft.date=2023-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11544577B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true