Adaptable filtering for edge-based deep learning models
Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic dev...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques for utilizing adaptable filters for edge-based deep learning models are described. Filters may be utilized by an edge electronic device to filter elements of an input data stream so that only a subset of the elements are used as inputs to a machine learning model run by the electronic device, enabling successful operation despite the input data stream potentially being generated at a higher rate than a rate in which the ML model can be executed. The filter can be a differential-type filter that generates difference representations between consecutive elements of the data stream to determine which elements are to be passed on for the ML model, a "smart" filter such as a neural network trained using outputs from the ML model allowing the filter to "learn" which elements are the most likely to be of value to be passed on, or a combination of both. |
---|