Accelerating formal property verification across design versions using sequential equivalence checking

A system and method for providing formal property verification across circuit design versions is described. In one embodiment, the system receives a first version and a second version of a circuit design. The received first version has a first set of constraints, a first set of next-state functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kundu, Sudipta, Jain, Mitesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system and method for providing formal property verification across circuit design versions is described. In one embodiment, the system receives a first version and a second version of a circuit design. The received first version has a first set of constraints, a first set of next-state functions representing the first version of the circuit design, and a first property that has been verified as true for the first version of the circuit design. The received second version has a second set of constraints, a second set of next-state functions representing the second version of the circuit design, and a second property for the second version of the circuit design. The described embodiments further construct a composite circuit design based on the first set of constraints, the first set of next-state functions, and the first property and further based on the second set of constraints, the second set of next-state functions, and the second property. A third property is constructed for the composite circuit design in which the first property implies the second property. Some described embodiments output a proof or a counterexample for the second circuit design, based on the proof of the third property for the composite circuit design, since a user of the system and method is trying to verify the second circuit design, not the composite circuit design.