Action shaping from demonstration for fast reinforcement learning

A method is provided for reinforcement learning. The method includes obtaining, by a processor device, a first set and a second set of state-action tuples. Each of the state-action tuples in the first set represents a respective good demonstration. Each of the state-action tuples in the second set r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pham, Tu-Hoa, Agravante, Don Joven Ravoy, De Magistris, Giovanni, Tachibana, Ryuki
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is provided for reinforcement learning. The method includes obtaining, by a processor device, a first set and a second set of state-action tuples. Each of the state-action tuples in the first set represents a respective good demonstration. Each of the state-action tuples in the second set represents a respective bad demonstration. The method further includes training, by the processor device using supervised learning with the first set and the second set, a neural network which takes as input a state to provide an output. The output is parameterized to obtain each of a plurality of real-valued constraint functions used for evaluation of each of a plurality of action constraints. The method also includes training, by the processor device, a policy using reinforcement learning by restricting actions predicted by the policy according to each of the plurality of action constraints with each of the plurality of real-valued constraint functions.