Training and/or using neural network model to generate target source code from lower-level representation

Training and/or utilization of a neural decompiler that can be used to generate, from a lower-level compiled representation, a target source code snippet in a target programming language. In some implementations, the lower-level compiled representation is generated by compiling a base source code sn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Singh, Rishabh, Andre, David, Vyas, Nisarg, Kotecha, Dhara, Parmar, Jayendra, Goncharuk, Artem
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Training and/or utilization of a neural decompiler that can be used to generate, from a lower-level compiled representation, a target source code snippet in a target programming language. In some implementations, the lower-level compiled representation is generated by compiling a base source code snippet that is in a base programming language, thereby enabling translation of the base programming language (e.g., C++) to a target programming language (e.g., Python). In some of those implementations, output(s) from the neural decompiler indicate canonical representation(s) of variables. Technique(s) can be used to match those canonical representation(s) to variable(s) of the base source code snippet. In some implementations, multiple candidate target source code snippets are generated using the neural decompiler, and a subset (e.g., one) is selected based on evaluation(s).