Locating underground features with seismic data processing
Methods are presented for determining the location of underground features (e.g., CO2). One method includes capturing, by sensors distributed throughout a region, seismic traces associated with seismic signals generated by a seismic source. For multiple sensors, active noise is identified or passive...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods are presented for determining the location of underground features (e.g., CO2). One method includes capturing, by sensors distributed throughout a region, seismic traces associated with seismic signals generated by a seismic source. For multiple sensors, active noise is identified or passive noise is measured within each seismic trace and values for attributes associated with the active or passive noise are determined. Further, an unsupervised machine-learning model, based on the values of the attributes, is utilized to determine noise characteristics for multiple sensors. The sensors are grouped in clusters based on the noise characteristics for each sensor. For multiple clusters, a noise filter is created based on the noise characteristics of the sensors in the cluster, and the noise filter of the cluster is applied, for multiple sensors, to the seismic traces of the sensor. Additionally, the filtered seismic traces are analyzed to determine a location of CO2 underground. |
---|