Method for analyzing a prediction classification in a machine learning model
A method is provided for analyzing a classification in a machine learning model (ML). In the method, the ML model is trained using a training dataset to produce a trained ML model. One or more samples are provided to the trained ML model to produce one or more prediction classifications. A gradient...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method is provided for analyzing a classification in a machine learning model (ML). In the method, the ML model is trained using a training dataset to produce a trained ML model. One or more samples are provided to the trained ML model to produce one or more prediction classifications. A gradient is determined for the one of more samples at a predetermined layer of the trained ML model. The one or more gradients and the one or more prediction classifications for each sample are stored. Also, an intermediate value of the ML model may be stored. Then, a sample is chosen to analyze. A gradient of the sample is determined if the gradient was not already determined when the at least one gradient is determined. Using the at least one gradient, and one or more of a data structure, a predetermined metric, and an intermediate value, the k nearest neighbors to the sample are determined. A report comprising the sample and the k nearest neighbors may be provided for analysis. |
---|