Explainable AI (xAI) platform for computational pathology

Pathologists are adopting digital pathology for diagnosis, using whole slide images (WSIs). Explainable AI (xAI) is a new approach to AI that can reveal underlying reasons for its results. As such, xAI can promote safety, reliability, and accountability of machine learning for critical tasks such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chennubhotla, Srinivas Chakra, Fine, Jeffrey Louis, Tosun, Akif Burak
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pathologists are adopting digital pathology for diagnosis, using whole slide images (WSIs). Explainable AI (xAI) is a new approach to AI that can reveal underlying reasons for its results. As such, xAI can promote safety, reliability, and accountability of machine learning for critical tasks such as pathology diagnosis. HistoMapr provides intelligent xAI guides for pathologists to improve the efficiency and accuracy of pathological diagnoses. HistoMapr can previews entire pathology cases' WSIs, identifies key diagnostic regions of interest (ROIs), determines one or more conditions associated with each ROI, provisionally labels each ROI with the identified conditions, and can triages them. The ROIs are presented to the pathologist in an interactive, explainable fashion for rapid interpretation. The pathologist can be in control and can access xAI analysis via a "why?" interface. HistoMapr can track the pathologist's decisions and assemble a pathology report using suggested, standardized terminology.