Hierarchical neural networks with granularized attention

Techniques are provided for generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ling, Yuan, Liu, Junyi, Farri, Oladimeji Feyisetan, Al Hasan, Sheikh Sadid
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Techniques are provided for generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.