Performing attribution modeling for arbitrary analytics parameters
The present disclosure relates to performing attribution modeling in real time using touchpoint data that correspond to arbitrary analytics parameters (e.g., a user-specified dimension) and are retrieved from a database using an attribution model. For example, in one or more embodiments, a system st...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present disclosure relates to performing attribution modeling in real time using touchpoint data that correspond to arbitrary analytics parameters (e.g., a user-specified dimension) and are retrieved from a database using an attribution model. For example, in one or more embodiments, a system stores raw data in an analytics database that comprises an aggregator and a plurality of nodes. In particular, each node stores touchpoint data associated with a different user. Upon receiving a query, the system can, in real time, retrieve subsets of the touchpoint data that correspond to a user-specified dimension in accordance with an attribution model. The system then combines the subsets of touchpoint data using the aggregator and generates the digital attribution report using the combined data. |
---|