Artificial intelligence system combining state space models and neural networks for time series forecasting

A composite time series forecasting model comprising a neural network sub-model and one or more state space sub-models corresponding to individual time series is trained. During training, output of the neural network sub-model is used to determine parameters of the state space sub-models, and a loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Januschowski, Tim, Rangapuram, Syama, Gasthaus, Jan Alexander, Seeger, Matthias, Stella, Lorenzo
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A composite time series forecasting model comprising a neural network sub-model and one or more state space sub-models corresponding to individual time series is trained. During training, output of the neural network sub-model is used to determine parameters of the state space sub-models, and a loss function is computed using the values of the time series and probabilistic values generated as output by the state space sub-models. A trained version of the composite model is stored.