Artificial intelligence system combining state space models and neural networks for time series forecasting
A composite time series forecasting model comprising a neural network sub-model and one or more state space sub-models corresponding to individual time series is trained. During training, output of the neural network sub-model is used to determine parameters of the state space sub-models, and a loss...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A composite time series forecasting model comprising a neural network sub-model and one or more state space sub-models corresponding to individual time series is trained. During training, output of the neural network sub-model is used to determine parameters of the state space sub-models, and a loss function is computed using the values of the time series and probabilistic values generated as output by the state space sub-models. A trained version of the composite model is stored. |
---|