Visually focused first-person neural network interpretation
Methods and systems for visually focused first-person neural network interpretation are disclosed. A method includes: receiving, by a computing device, an image; determining, by the computing device, feature vectors from the image; determining, by the computing device, a first padding value and a fi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods and systems for visually focused first-person neural network interpretation are disclosed. A method includes: receiving, by a computing device, an image; determining, by the computing device, feature vectors from the image; determining, by the computing device, a first padding value and a first stride value by inputting the feature vectors into a deep neural network; determining, by the computing device, a second padding value and a second stride value by inputting the feature vectors into at least one multiple regression model; determining, by the computing device, padding by averaging the first padding value and the second padding value; determining, by the computing device, stride by averaging the first stride value and the second stride value; and classifying, by the computing device, the image using a convolutional neural network using the padding and the stride. |
---|